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‡ Center for Advanced Study, Tsinghua University, Beijing 100084, People’s Republic of China
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Abstract. The two-dimensional Calogero model in a time-independent external magnetic field is
extended to the time-dependent case which can be solved exactly. Both the invariant operator and
the eigenstate are obtained. For the periodical time-dependent case, the non-adiabatic Berry phase
is also presented.

1. Introduction

Multi-body problems have always attracted much interest in the field of atomic and nuclear
physics. A celebrated example of a solvable model is the well known Calogero model in one or
two dimensions [1–5]. In these models, not only doN particles interact with each other through
a two-body potential which varies as the inverse square of the distance between two particles,
but they are also trapped in a harmonic potential well. If the charged particle system described
by the Calogero model in two dimensions is placed in a static magnetic field which does not
vary with space and time [6], it is shown that the system is analytically solvable, especially
for the single-body problem [7]. As we known, these solvable multi-body models are all time
independent. An interesting problem is that the magnetic field acting on the Calogero model
varies with time. It is shown that this system is also exactly solvable and the non-adiabatic
Berry phase can be obtained if the magnetic field is periodic in time.

This paper is arranged as follows. In section 2 the general method for solving the time-
dependent system [8] is given. In section 3 the method is applied to the two-dimensional
Calogero model which is acted upon by a time-dependent magnetic field along thez-axis. The
invariant of the system and the non-adiabatic Berry phase are obtained. Some conclusions are
given in section 4.

2. The general method for solving a time-dependent quantum system

Consider the time-dependent Schrödinger equation (¯h = 1)

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉. (1)

In order to solve this equation [2], a unitary transformation for the wavefunction is made

|ψ(t)〉′ = U−1(t)|ψ(t)〉. (2)
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It is obvious that if the Hamiltonian makes the following transformation:

U−1(t)H(t)U(t)− iU−1(t)
∂U(t)

∂t
≡ H(t)′ (3)

the Schr̈odinger equation maintains its original form, i.e.

i
d

dt
|ψ(t)〉′ = H(t)′|ψ(t)〉′. (4)

Our aim is to choose several appropriate unitary transformations to make the time-
dependent Hamiltonian take the general Hill–Floquet–Bloch (HFB) form, i.e. the time-
dependent HamiltonianH ′ is transformed into the form

H(t)′ = η(t)H ′0 (5)

whereH ′0 is a time-independent Hamiltonian, butη(t) is a time-dependent function. In this
case the solution for|ψ〉′ takes the following form:

|ψ(t)〉′ = exp

[
− iH ′0

∫ t

t0

η(s) ds

]
|φ〉 (6)

where|φ〉 can be expressed by the eigenstates of the time-independent HamiltonianH ′0 , i.e.
H0|φn〉 = En|φn〉 and|φ〉 = ∑

an|φn〉, in which an are some constants. On account of the
transformations in equations (2) and (6) the solution for the Schrödinger equation (1) is

|ψ(t)〉 = U(t)
∑

an exp

[
− iEn

∫ t

t0

η(s) ds

]
|φn〉. (7)

With the help of equation (3), we find thatI (t) = U(t)H0U
−1(t) is the invariant of the

system, i.e.I (t) satisfies the equationdIdt = ∂I
∂t

+ i[H, I ] = 0. It is easy to prove that the
eigenfunction ofI (t) is

|λn(t)〉 = U(t)|φn〉 (8)

and its eigenvalues are the same as those ofH0. In order to give the non-adiabatic Berry phase,
the Hamiltonian should be periodical i.e.H(t + T ) = H(t). If the transformationU(t) has
the same period as the HamiltonianH(t) and the initial state of the system is chosen as the
eigenstate ofH ′0, it can be seen from equation (7) that the state should return to itself after a
periodT up to a Hill’s phaseαn(T )

αn(T ) = En
∫ T

0
η(s) ds. (9)

The dynamic phase is the time integral of the instantaneous expectation value of the
Hamiltonianδn =

∫ T
0 〈ψn(t)|H(t)|ψ(t)〉 dt . Following [8] the non-adiabatic Berry phase is

obtained by using equations (3), (7) and (9):

βn = αn − δn = −i
∫ T

0
〈φn|U−1∂U

∂t
|φn〉 dt (10)

which expresses that the non-adiabatic Berry phase is independent of the eigenvalue of the
Hamiltonian,H0, but depends on its eigenstate and corresponding unitary transformationU .

3. N -particle model and its solution

N particles moving in a two-dimensional parabolic potential,
∑N

i=1
1
2ω

2
0Er2
i , with repulsive

interaction β

r2 , subjected to a magnetic fieldB along thez-axis. If the vector potential of the
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magnetic field varies with time, working in the symmetric gauge,EA(t) = B(t)

2 (−y, x,0), the
Hamiltonian of this system can be written as [6]

H = Hspace(t) +Hspin(t) (11)

Hspace(t) =
N∑
i=1

( EP 2
i

2m∗
+

1

2
m∗ω2(t)Er2

i +
ωc

2
li

)
+
∑
i<j

β

|Eri − Erj |2
(12)

Hspin(t) = −g∗µBB(t)
N∑
i=1

siZ (13)

whereω2(t) = ω2
0 +ω2

c/4 andωc = eB(t)/m∗c is the cyclotron’s frequency.ω0 can also vary
with time, which means the harmonic potential can be time-dependent [9]. The momentum
and position of theith particle are given by the two-dimensional vectorsEpi andEri , respectively.
li is thez component of angular momentum. The Calogero-like models in high dimensions
generally have a three-body potential present for solvability [1, 3, 4]. The above Hamiltonian
is a special case where the three-body force is zero, and this is of some interest to the quantum
dot community. It is also worth pointing out that the inverse-square interaction is scaling
independent even when confined in a harmonic potential. This has important implications on
the spectrum of a breathing model [10].

Hspin is the Zeeman energy and the eigenstates ofHspin(t) are just the product of the
spinors of individual particles. Due to [Hspin(t),H(t)] = 0, for simplicity, we neglect the
influence of theHspin(t) and select the mass of the particles to be unity hereafter. In order to
obtain the spacial state, the following consecutive transformations are introduced, which make
the spacial state|ψ(t)〉 become|ψ1(t)〉, |ψ2(t)〉 and|ψ3(t)〉, respectively:

|ψ(t)〉 = U1|ψ1(t)〉 = exp
[
− iλ(t)

N∑
i=1

li

]
|ψ1(t)〉 (14)

|ψ1(t)〉 = U2|ψ2(t)〉 = exp

[
iC(t)

N∑
i=1

Er2
i

]
|ψ2(t)〉 (15)

and

|ψ2(t)〉 = U3|ψ3(t)〉 = exp

[
iD(t)

N∑
i=1

Eri · Epi + Epi · Eri
]
|ψ3(t)〉 (16)

whereλ(t),C(t) andD(t) are real functions of time. These functions are chosen in such a way
that the HamiltonianHspace(t), after these transformations, takes the HFB form according to
the method shown in section 2.

It is easy to show that under these transformations the coordinate and momentum operators
change in the following way:

U−1
1 xU1 = x cosλ + iy sinλ U−1

1 yU1 = y cosλ− ix sinλ

U−1
1 pxU1 = px cosλ + ipy sinλ U−1

1 pyU1 = py cosλ− ipx sinλ

U−1
1 Er2

i U1 = Er2
i U−1

1

1

|Eri − Erj |2
U1 = 1

|Eri − Erj |2
U−1

1 Ep2
i U1 = Ep2

i (17)

U−1
2 EriU2 = Eri U−1

2 EpiU2 = Epi + 2C(t)Eri (18)

U−1
3 EriU3 = Eri exp[−2D(t)] U−1

3 EpiU3 = Epi exp[2D(t)]. (19)

Using equations (3) and (17), we get the HamiltonianH1(t) after transformingHspace(t)
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with U1:

H1(t) = U−1
1 Hspace(t)U1− iU−1

1

∂U1

∂t
=

N∑
i=1

[ EP 2
i

2
+

1

2
ω2(t)Er2

i +

(
ωc

2
− dλ(t)

dt

)
li z

]

+
∑
i<j

β

|Eri − Erj |2
. (20)

Obviously, ifλ(t) is chosen to satisfy

ωc

2
− dλ(t)

dt
= 0 (21)

the li term disappears in equation (20). In other words, the magnetic field is removed by
going to an appropriate rotating frame (usingU1). It must be noted that the rotational angular
functionλ(t) has been determined by equation (21). Following the procedure of obtaining
equation (20), the HamiltonianH1(t) becomesH2(t), H3(t) respectively, after usingU2 and
U3 transformations whose generators are the monopole compression and dilatation operators:

H2(t) = U−1
2 H1(t)U2 − iU−1

2

∂U2

∂t
=

N∑
i=1

[ EP 2
i

2
+

(
∂C(t)

∂t
+ 2C2(t) +

1

2
ω2

0(t)

)
Er2
i

]

+C(t)
N∑
i=1

(Eri · Epi + Epi · Eri) +
∑
i<j

β

|Eri − Erj |2
(22)

and

H3(t) = U−1
3 H2(t)U3− iU−1

3

∂U3

∂t

= exp[4D(t)]
N∑
i=1

[ EP 2
i

2
+ exp(−4D(t))

(
dC(t)

dt
+ 2C2(t) +

1

2
ω2

0(t)

)
Er2
i

]

+

(
C(t) +

dD(t)

dt

) N∑
i=1

(Eri · Epi + Epi · Eri) + exp[4D(t)]
∑
i<j

β

|Eri − Erj |2
. (23)

In order to makeH3(t) take a HFB form,C(t),D(t) are chosen to satisfy:

C(t) +
dD(t)

dt
= 0 (24)

dC(t)

dt
+ 2C2(t) +

1

2
ω2

0(t) =
�2

2
exp[8D(t)] (25)

where� is an arbitrary constant. Settingρ(t) = exp[−2D(t)], equation (25) can be rewritten
in brief form:

d2ρ

d2t
+

1

2
ω2(t) = �2

ρ3
. (26)

After those choices,H3 is shown in the HFB form:

H3(t) = 1

ρ2(t)

[ N∑
i=1

EP 2
i

2
+

1

2
�2

N∑
i=1

Er2
i +

∑
i<j

β

|Eri − Erj |2
]
≡ 1

ρ2(t)
H0 (27)

whereH0 is the Hamiltonian of the Calogero model in two-dimensional space and1
ρ2(t)

is
determined by the auxiliary equation (26). From the above, it is clear that the time-dependent
HamiltonianHspace(t) with a term1

2ωc(t)li can be transformed into a product form of a time-
independent Calogero model and a time-dependent factor, which is the HFB form we want.
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On account of equation (6), the solution of the Schrödinger equation ofH3(t) is shown to
be

|ψ3(t)〉 = exp

[
− iH0

∫ t

t0

1

ρ2(τ )
dτ

]
|ψ3(t0)〉. (28)

To obtain an explicit form of the solution, let us assume the initial state as:|ψ3(t0)〉 =∑
n an|φn〉, where|φn〉 is the eigenstate of the time-independent Calogero model’s Hamiltonian

H0. We have

|ψ3(t)〉 =
∑
n

an exp

[
− iEn

∫ t

t0

1

ρ2(τ )
dτ

]
|φn〉. (29)

The exact solution of the HamiltonianHspace(t) can now be found by combining the above
results. We finally obtain

|ψ(t)〉 = U(t)|ψ3(t)〉 =
∑
n

an exp

[
− iEn

∫ t

t0

1

ρ2(τ )
dτ

]
U(t)|φn〉 =

∑
n

an|9n(t)〉 (30)

where we have definedU(t) = U1U2U3 and|9n(t)〉 = exp[−iEn
∫ t
t0

1
ρ2(τ )

dτ ]U(t)|φn〉.
It can be seen from equation (30) that if the eigenstates and eigenvalues ofH0 are known,

so are the solutions of the time-dependent HamiltonianHspace(t). Unlike the one-dimensional
Calogero model, the models in higher dimensions are only exactly solvable for the ground
state and a class of excited states. Now we only consider the ground state and its eigenvalue
of the Calogero model, which are given as follows [2]:

|φ0〉 =
N∏
i=1

exp[−�Er2
i /2]

N∏
j>i=1

|Eri − Erj |m

E0 = N [m(N − 1) + 1]

(31)

where we have setβ = m(m− 1). If |φ0〉 is chosen as the initial state|ψ3(t0)〉, the evolution
of the state is written by using equation (7)

|ψ0(t)〉 = exp

[
− i

∫ t

t0

1

2
ωc(τ) dτ

N∑
i=1

li

]
exp

[
− i

˙ρ(t)

2ρ(t)

N∑
i=1

Er2
i

]

× exp

[
− i

1

2
ln ρ(t)

N∑
i=1

(Eri · Epi + Epi · Eri)
]

× exp

[
− iE0

∫ t

t0

1

ρ2(τ )
dτ

] N∏
i=1

exp[−�Er2
i /2]

N∏
j>i=1

|Eri − Erj |m. (32)

It can be easily proved that the invariant operator of the HamiltonianHspace(t) is

I (t) = U(t)H0U
−1 = 1

2m∗

N∑
i=1

(ρ Epi − ρ̇Eri)2 +
1

2ρ2
�2

0

N∑
i=1

Er2
i + ρ2

∑
i<j

β

|Eri − Erj |2
(33)

and|9n(t)〉 is the eigenstate ofI (t) with eigenvalueEn.
In order to give the non-adiabatic Berry phase, a periodical HamiltonianHspace(t + T ) =

Hspace(t) is considered. According to equation (10) the non-adiabatic Berry phase of the
system is

β(T ) = −
N∑
i=1

∫ T

0
〈φ0(τ )|Er2

i |φ0(τ )〉
∮
ρ̇ dρ. (34)

Equation (34) shows that due to the time-dependent magnetic field acting on the Calogero
model, the non-adiabatic Berry phase appears in this system no matter whether there are trapped
harmonic potentials or not.
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4. Conclusion and acknowledgment

By performing the time-dependent unitary transformation, the two-dimensional Calogero
model acted upon by a time-dependent external field can be transformed into a product of
a time-independent Calogero model’s Hamiltonian and a factor depending only on time. The
invariant operator and the eigenstate of this system is presented formally. If the magnetic
field is periodical in time, the adiabatic Berry phase always exists no matter whether there is
harmonic potential or not.

References

[1] Murthy M V N, Bhaduri P K and Sen D 1996Phys. Rev. Lett.764103
[2] Calogero F 1971J. Math. Phys.12419

Calogero F 1969J. Math. Phys.102191
[3] Date G, Ghosh P K and Murthy M V N 1998Phys. Rev. Lett.813051
[4] Ghosh P K 1997Phys. Lett.A 2293
[5] Sutherland B 1998Phys. Rev. Lett.803678
[6] Johnson N F and Ouiroga L 1995Phys. Rev. Lett.744277
[7] Quiroga L and Ardila D R 1998Solid State Commun.86775
[8] Maamache M 1996J. Phys. A: Math. Gen.292833

Maamache M 1998J. Phys. A: Math. Gen.39161
[9] Bai Z M and Ge M L 1999Phys. Lett.A 253

[10] Pitaevskii R 1997Phys. Rev.A 55R853


